An Interactive Applet powered by Sage and MathJax.
(By Prof. Gregory V. Bard, updated by Ryan G. Hornberger.)
Systems of inequalities are extremely important tools for industrial engineering and other problems of modern-day management. They are the principal part of the subject called "Linear Programming." Example problems can be found in topics as diverse as nutrition, transportation, logistics, manufacturing, scheduling, and investing.
In our particular case, we will be looking at the following system of inequalities: $$ \begin{array}{rcl} 1.5 - 2x & \ge & y \\ 1-x & \ge & y \\ 0.5 - 0.5 x & \le & y \\ x & \ge & 0 \\ y & \ge & 0 \end{array} $$
Each inequality in a system of inequalities represents a constraint---some sort of requirement that the solution or "plan" must accommodate. In the above, the values of $x$ and $y$ are initially not known. The feasible region is the set of all points $(x, y)$ which satisfy every inequality. If some point violates even one inequality, then it is not permitted to be part of the feasible region. These points represent circumstances or plans that meet all of the requirements.
One of the critical steps in solving a linear program, or working with systems of inequalities in any context, is to graph them and find the feasible region. The graphing of the inequalities is straight forward, as the equations are merely lines. For example, to graph $3x + 6y \le 12$ we would only need to graph the line $3x + 6y = 12$, something all of us know how to do at this point. However, it is not so easy (after the lines are drawn) to find the feasible region. The applet below will address this challenging step.
The following applet will, at first, present you with two sliders: one for $x$ and one for $y$. Then as you move them, it will tell you if each inequality is satisfied or not.
On an exam, remember: draw a line, shade, draw a line, shade, and so forth. Nonetheless, it is a good skill (and a great exam question) to show the student a graph with all the lines as above, and have the student choose which of the regions is the feasible region.